Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells

نویسندگان

  • Ken'ichiro Hayashi
  • Masanori Takahashi
  • Kazuhiro Kimura
  • Wataru Nishida
  • Hiroshi Saga
  • Kenji Sobue
چکیده

The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860-28867), in which insulin-like growth factor-I (IGF-I) was the most potent for maintaining the differentiated SMC phenotype, and IGF-I triggered the phosphoinositide 3-kinase (PI3-K) and protein kinase B (PKB(Akt)) pathway. Here, we investigated the signaling pathways involved in de-differentiation of gizzard SMCs induced by PDGF-BB, bFGF, and EGF. In contrast to the IGF-I-triggered pathway, PDGF-BB, bFGF, and EGF coordinately activated ERK and p38MAPK pathways. Further, the forced expression of active forms of MEK1 and MKK6, which are the upstream kinases of ERK and p38MAPK, respectively, induced de-differentiation even when SMCs were stimulated with IGF-I. Among three growth factors, PDGF-BB only triggered the PI3-K/PKB(Akt) pathway in addition to the ERK and p38MAPK pathways. When the ERK and p38MAPK pathways were simultaneously blocked by their specific inhibitors or an active form of either PI3-K or PKB(Akt) was transfected, PDGF-BB in turn initiated to maintain the differentiated SMC phenotype. We applied these findings to vascular SMCs, and demonstrated the possibility that the same signaling pathways might be involved in regulating the vascular SMC phenotype. These results suggest that changes in the balance between the PI3-K/PKB(Akt) pathway and the ERK and p38MAPK pathways would determine phenotypes of visceral and vascular SMCs. We further reported that SMCs cotransfected with active forms of MEK1 and MKK6 secreted a nondialyzable, heat-labile protein factor(s) which induced de-differentiation of surrounding normal SMCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells.

BACKGROUND The coordinated activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) is critical for the induction of vascular and visceral smooth muscle cell (SMC) dedifferentiation. We previously reported that on the forced activation of both MAPKs, visceral SMCs secrete a non-heparin-binding protein factor(s) that is involved in the dediffer...

متن کامل

Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β

Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...

متن کامل

Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review

Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 145  شماره 

صفحات  -

تاریخ انتشار 1999